Login / Signup

Development of a Stretchable and Water-Resistant Hydrogel with Antibacterial and Antioxidant Dual Functions for Wound Healing in Movable Parts.

Shu ZhangLinxin YangYuting WangGuangmei YangYahong LiYuanyuan LiJunjin ZhuRuyi LiWenjia XieQian-Bing WanXibo PeiJunyu ChenXin ZhangJian Wang
Published in: ACS applied materials & interfaces (2023)
The treatment of wounds that develop on moving parts of the body, such as joints, is considered a challenge due to poor mechanical matching and secondary injury caused by continuous motion and inflammation. Herein, a stretchable, multifunctional hydrogel dressing utilizing the dual cross-linking of chitosan (CS) and acrylic acid (AA) and modified with caffeic acid (CA) and aloin (Alo) was developed. Mechanical testing demonstrated that the hydrogel possessed excellent stretching capability (of approximately 869%) combined with outstanding adhesion (about 56 kPa), contributing to its compatibility with moving parts and allowing complete coverage of wound sites without limiting joint and organ motion. Bioinformatics analysis confirmed that use of the hydrogel resulted in upregulated expression of multiple genes related to angiogenesis and cell proliferation. Furthermore, antibacterial testing indicated that the dressing suppressed the growth of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA), providing a better microenvironment for wound healing. An in vivo wound defect model on movable skin verified that the wound healing observed with the hydrogel dressing was superior to that observed with a commercially available dressing. Taken together, the results suggest that a stretchable multifunctional hydrogel dressing represents a promising alternative wound dressing with therapeutic potential for superior healing, especially for moving parts of the body.
Keyphrases