Design of Robust Thermal and Anion Dual-Responsive Membranes with Switchable Response Temperature.
Ran WeiFan YangRuixue GuQian LiuJukai ZhouXiang ZhangWei-Feng ZhaoCheng-Sheng ZhaoPublished in: ACS applied materials & interfaces (2018)
In this study, poly(ionic liquids/ N-isopropylacrylamide) (PIL/NIPAM) modified poly(ether sulfone) microporous membranes were prepared using a pore-filling method. Due to the anion-sensitive wettability of the PIL and the thermal-sensitive phase transformation of PNIPAM, the permeability of the modified membranes showed robust anion and thermal dual-responsive behaviors. In addition, the response temperature of the membranes could be adjusted precisely from 30 to 55 °C by anion exchange, which was attributed to the cooperative interaction of the PIL and PNIPAM. The switchable response temperature and the dual-responsive performances of the membranes were demonstrated by measuring the water fluxes under various conditions. The results indicated that the membrane permeabilities increased when exchanging the counteranions (CAs) from hydrophilic to hydrophobic ones; the thermal response behaviors were also obvious, and the sensitivity increased when increasing the hydrophobicity of the CA (the fluxes could be adjusted from 0 to 3800 mL/m2 mmHgh by controlling the temperature and CAs). At last, filtration tests were designed with the membranes, and the results indicated that by controlling the temperature and/or CA species, three different poly(ethylene glycol) molecules could be easily separated according to their molecule sizes in a single step.