Login / Signup

Soft Actuator with Programmable Design: Modeling, Prototyping, and Applications.

Zicheng KanChohei PangYazhan ZhangYang YangMichael Yu Wang
Published in: Soft robotics (2022)
Designs of soft actuators are mostly guided and limited to certain target functionalities. This article presents a novel programmable design for soft pneumatic bellows-shaped actuators with distinct motions, thus a wide range of functionalities can be engendered through tuning channel parameters. According to the design principle, a kinematic model is established for motion prediction, and a sampling-based optimal parameter search is executed for automatic design. The proposed design method and kinematic models provide a tool for the generation of an optimal channel curve, with respect to target functions and required motion trajectories. Quantitative characterizations on the analytical model are conducted. To validate the functionalities, we generate three types of actuators to cover a wide range of motions in manipulation and locomotion tasks. Comparisons of model prediction on motion trajectory and prototype performance indicate the efficacy of the forward kinematics, and two task-based optimal designs for manipulation scenarios validate the effectiveness of the design parameter search. Prototyped by additive manufacturing technique with soft matter, multifunctional robots in case studies have been demonstrated, suggesting adaptability of the structure and convenience of the soft actuator's automatic design in both manipulation and locomotion. Results show that the novel design method together with the kinematic model paves a way for designing function-oriented actuators in an automatic flow.
Keyphrases
  • randomized controlled trial
  • deep learning
  • depressive symptoms
  • climate change
  • high resolution
  • mass spectrometry
  • upper limb
  • cancer therapy