Sequence-specific binding behavior of coralyne toward triplex DNA: An ultrafast time-resolved fluorescence spectroscopy study.
Zeqing JiaoChunfan YangQian ZhouZheng HuJialong JieXianwang ZhangHongmei SuPublished in: The Journal of chemical physics (2023)
Triplex DNA structure has potential therapeutic application in inhibiting the expression of genes involved in cancer and other diseases. As a DNA-targeting antitumor and antibiotic drug, coralyne shows a remarkable binding propensity to triplex over canonical duplex and thus can modulate the stability of triplex structure, providing a prospective gene targeting strategy. Much less is known, however, about coralyne-binding interactions with triplex. By combining multiple steady-state spectroscopy with ultrafast fluorescence spectroscopy, we have investigated the binding behaviors of coralyne with typical triplexes. Upon binding with a G-containing triplex, the fluorescence of coralyne is markedly quenched owing to the photoinduced electron transfer (PET) of coralyne with the G base. Systematic studies show that the PET rates are sensitive to the binding configuration and local microenvironment, from which the coexisting binding modes of monomeric (full and partial) intercalation and aggregate stacking along the sugar-phosphate backbone are distinguished and their respective contributions are determined. It shows that coralyne has preferences for monomeric intercalation within CGG triplex and pure TAT triplex, whereas CGC + triplex adopts mainly backbone binding of coralyne aggregates due to charge repulsion, revealing the sequence-specific binding selectivity. The triplex-DNA-induced aggregation of coralyne could be used as a probe for recognizing the water content in local DNA structures. The strong π-π stacking of intercalated coralyne monomer with base-triplets plays an important role in stabilizing the triplex structure. These results provide mechanistic insights for understanding the remarkable propensity of coralyne in selective binding to triplex DNA and shed light on the prospective applications of coralyne-triplex targeted anti-gene therapeutics.