Identifying emerging mental illness utilizing search engine activity: A feasibility study.
Michael Leo BirnbaumHongyi WenAnna R Van MeterSindhu K ErnalaAsra F RizviElizabeth ArenareDeborah EstrinMunmun De ChoudhuryJohn M KanePublished in: PloS one (2020)
Mental illness often emerges during the formative years of adolescence and young adult development and interferes with the establishment of healthy educational, vocational, and social foundations. Despite the severity of symptoms and decline in functioning, the time between illness onset and receiving appropriate care can be lengthy. A method by which to objectively identify early signs of emerging psychiatric symptoms could improve early intervention strategies. We analyzed a total of 405,523 search queries from 105 individuals with schizophrenia spectrum disorders (SSD, N = 36), non-psychotic mood disorders (MD, N = 38) and healthy volunteers (HV, N = 31) utilizing one year's worth of data prior to the first psychiatric hospitalization. Across 52 weeks, we found significant differences in the timing (p<0.05) and frequency (p<0.001) of searches between individuals with SSD and MD compared to HV up to a year in advance of the first psychiatric hospitalization. We additionally identified significant linguistic differences in search content among the three groups including use of words related to sadness and perception, use of first and second person pronouns, and use of punctuation (all p<0.05). In the weeks before hospitalization, both participants with SSD and MD displayed significant shifts in search timing (p<0.05), and participants with SSD displayed significant shifts in search content (p<0.05). Our findings demonstrate promise for utilizing personal patterns of online search activity to inform clinical care.