Bifidobacterium animalis subsp. lactis Probio-M8 alleviates abnormal behavior and regulates gut microbiota in a mouse model suffering from autism.
Zhuangzhuang MiaoLin ChenYong ZhangJiachao ZhangHeping ZhangPublished in: mSystems (2023)
Probiotics can effectively improve a variety of neurological diseases, but there is little research on autism, and the specific mechanism is unclear. In this study, shotgun metagenomics analysis was used to investigate the preventive and therapeutic effects of Bifidobacterium animalis subsp. lactis Probio-M8 on autism. The results showed that Probio-M8 treatment significantly alleviated valproate (VPA)-induced autism in mice, with autistic symptoms characterized by increased stereotyped behaviors such as grooming, reduced learning ability, and decreased desire to socialize. Further studies have found that Probio-M8 can alleviate autism by optimizing gut microbiota diversity and regulating metabolic levels. Probio-M8 regulates gut microbiota structure by increasing the abundance of beneficial bacteria such as Bifidobacterium globosum and Akkermansia muciniphila . In addition, Probio-M8 regulates metabolic activity by increasing levels of choline, which corrects CAZy disorders. In conclusion, Probio-M8 is therapeutic in the VPA-induced autism mouse model by regulating the gut microbiome and metabolic levels.IMPORTANCEIndividuals with autism often exhibit symptoms of social invariance, obsessive-compulsive tendencies, and repetitive behaviors. However, early intervention and treatment can be effective in improving social skills and mitigating autism symptoms, including behaviors related to irritability. Although taking medication for autism may lead to side effects such as weight gain, probiotics can be an ideal intervention for alleviating these symptoms. In this study, we investigated the effects of Probio-M8 intervention on the behavior of autistic mice using an open-field test, a three-chamber sociability test, and a novel object recognition test. Metagenomic analysis revealed differences in gut microbiota diversity among groups, predicted changes in metabolite levels, and functionally annotated CAZy. Additionally, we analyzed serum neurotransmitter levels and found that probiotics were beneficial in mitigating neurotransmitter imbalances in mice with autism.
Keyphrases
- autism spectrum disorder
- intellectual disability
- mouse model
- randomized controlled trial
- weight gain
- healthcare
- body mass index
- emergency department
- metabolic syndrome
- working memory
- single cell
- type diabetes
- microbial community
- weight loss
- preterm birth
- antibiotic resistance genes
- birth weight
- atomic force microscopy
- gestational age
- data analysis
- medical students