Longitudinal Analysis of SARS-CoV-2-Specific Cellular and Humoral Immune Responses and Breakthrough Infection following BNT162b2/BNT162b2/BNT162b2 and ChAdOx1/ChAdOx1/BNT162b2 Vaccination: A Prospective Cohort in Naive Healthcare Workers.
Geon Young KoJihyun LeeHyunjoo BaeJi Hyeong RyuHye-Sun ParkHyunhye KangJin JungAe-Ran ChoiRaeseok LeeDong-Gun LeeEun Jee OhPublished in: Vaccines (2023)
Assessing immune responses post-SARS-CoV-2 vaccination is crucial for optimizing vaccine strategies. This prospective study aims to evaluate immune responses and breakthrough infection in 235 infection-naïve healthcare workers up to 13-15 months after initial vaccination in two vaccine groups (108 BNT/BNT/BNT and 127 ChAd/ChAd/BNT). Immune responses were assessed using the interferon-gamma enzyme-linked immunospot (ELISPOT) assay, total immunoglobulin, and neutralizing activity through surrogate virus neutralization test at nine different time points. Both groups exhibited peak responses one to two months after the second or third dose, followed by gradual declines over six months. Notably, the ChAd group exhibited a gradual increase in ELISPOT results, but their antibody levels declined more rapidly after reaching peak response compared to the BNT group. Six months after the third dose, both groups had substantial cellular responses, with superior humoral responses in the BNT group ( p < 0.05). As many as 55 breakthrough infection participants displayed higher neutralization activities against Omicron variants, but similar cellular responses compared to 127 infection-naïve individuals, suggesting cross-immunity. Distinct neutralization classifications (<30%, >80% inhibition) correlated with different ELISPOT results. Our study reveals diverse immune response patterns based on vaccine strategies and breakthrough infections, emphasizing the importance of understanding these dynamics for optimized vaccination decisions.