Characterization of Aberrations in DNA Damage Repair Pathways in Gastrointestinal Stromal Tumors: The Clinicopathologic Relevance of γH2AX and 53BP1 in Correlation with Heterozygous Deletions of CHEK2 , BRCA2 , and RB1 .
Ting-Ting LiuChien-Feng LiKien Thiam TanYi-Hua JanPei-Hang LeeChih-Hao HuangShih-Chen YuCheng-Feng TsaoJui-Chu WangHsuan-Ying HuangPublished in: Cancers (2022)
Genetic aberrations involving DNA damage repair (DDR) remain underexplored in gastrointestinal stromal tumors (GISTs). We characterized DDR abnormalities using targeted next-generation sequencing and multiplex ligation-dependent probe amplification, and performed immunofluorescence (IF) and immunohistochemistry (IHC) analyses of γH2AX and 53BP1. Consistent with IF-validated nuclear co-localization, γH2AX and 53BP1 showed robust correlations in expression levels, as did both biomarkers between IF and IHC. Without recurrent pathogenic single-nucleotide variants, heterozygous deletions (HetDels) frequently targeted DNA damage-sensing genes, with CHEK2 -HetDel being the most prevalent. Despite their chromosomal proximity, BRCA2 and RB1 were occasionally hit by HetDels and were seldom co-deleted. HetDels of CHEK2 and BRCA2 showed a preference for older age groups, while RB1 -HetDel predominated in the non-gastric, high-risk, and 53BP1-overexpressing GISTs. Higher risk levels were consistently related to γ-H2AX or 53BP1 overexpression (all p < 0.01) in two validation cohorts, while only 53BP1 overexpression was associated with the deletion of KIT exon 11 ( KIT ex11-del) among genotyped GISTs. Low expressers of dual biomarkers were shown by univariate analysis to have longer disease-free survival ( p = 0.031). However, higher risk levels, epithelioid histology, and KIT ex11-del retained prognostic independence. Conclusively, IHC is a useful surrogate of laborious IF in the combined assessment of 53BP1 and γ-H2AX to identify potential DDR-defective GISTs, which were frequently aberrated by HetDels and a harbinger of progression.