Adaptive T-cell immunity controls senescence-prone MyD88- or CARD11-mutant B-cell lymphomas.
Maurice ReimannJens SchrezenmeierPaulina Richter-PechanskaAnna DolnikTimon Pablo HickKolja SchleichXiurong CaiDorothy N Y FanPhilipp LohneisSven MaßwigSophy DenkerAntonia BusseGero KnittelRuth FlümannDorothee ChildsLiam H ChildsAna-Maria Gätjens-SanchezLars BullingerAndreas RosenwaldHans Christian ReinhardtClemens A SchmittPublished in: Blood (2021)
Aberrant B-cell receptor/NF-κB signaling is a hallmark feature of B-cell non-Hodgkin lymphomas, especially in diffuse large B-cell lymphoma (DLBCL). Recurrent mutations in this cascade, for example, in CD79B, CARD11, or NFKBIZ, and also in the Toll-like receptor pathway transducer MyD88, all deregulate NF-κB, but their differential impact on lymphoma development and biology remains to be determined. Here, we functionally investigate primary mouse lymphomas that formed in recipient mice of Eµ-myc transgenic hematopoietic stem cells stably transduced with naturally occurring NF-κB mutants. Although most mutants supported Myc-driven lymphoma formation through repressed apoptosis, CARD11- or MyD88-mutant lymphoma cells selectively presented with a macrophage-activating secretion profile, which, in turn, strongly enforced transforming growth factor β (TGF-β)-mediated senescence in the lymphoma cell compartment. However, MyD88- or CARD11-mutant Eµ-myc lymphomas exhibited high-level expression of the immune-checkpoint mediator programmed cell death ligand 1 (PD-L1), thus preventing their efficient clearance by adaptive host immunity. Conversely, these mutant-specific dependencies were therapeutically exploitable by anti-programmed cell death 1 checkpoint blockade, leading to direct T-cell-mediated lysis of predominantly but not exclusively senescent lymphoma cells. Importantly, mouse-based mutant MyD88- and CARD11-derived signatures marked DLBCL subgroups exhibiting mirroring phenotypes with respect to the triad of senescence induction, macrophage attraction, and evasion of cytotoxic T-cell immunity. Complementing genomic subclassification approaches, our functional, cross-species investigation unveils pathogenic principles and therapeutic vulnerabilities applicable to and testable in human DLBCL subsets that may inform future personalized treatment strategies.
Keyphrases
- diffuse large b cell lymphoma
- toll like receptor
- nuclear factor
- wild type
- epstein barr virus
- transforming growth factor
- cell cycle arrest
- signaling pathway
- induced apoptosis
- endothelial cells
- pi k akt
- inflammatory response
- dna damage
- stem cells
- oxidative stress
- lps induced
- immune response
- epithelial mesenchymal transition
- cell death
- endoplasmic reticulum stress
- adipose tissue
- poor prognosis
- transcription factor
- bone marrow
- machine learning
- mesenchymal stem cells
- deep learning
- skeletal muscle
- cell therapy
- sensitive detection
- binding protein
- peripheral blood
- metabolic syndrome
- hodgkin lymphoma
- single molecule
- insulin resistance
- dna methylation