Genome-Wide Identification of the TIFY Gene Family in Brassiceae and Its Potential Association with Heavy Metal Stress in Rapeseed.
Fujun SunZhiyou ChenQianwei ZhangYuanyuan WanRan HuShulin ShenSi ChenNengwen YinYunshan TangYing LiangKun LuCun-Min QuWei HuaJiana LiPublished in: Plants (Basel, Switzerland) (2022)
The TIFY gene family plays important roles in various plant biological processes and responses to stress and hormones. The chromosome-level genome of the Brassiceae species has been released, but knowledge concerning the TIFY family is lacking in the Brassiceae species. The current study performed a bioinformatics analysis on the TIFY family comparing three diploid ( B. rapa , B. nigra , and B. oleracea ) and two derived allotetraploid species ( B. juncea , and B. napus ). A total of 237 putative TIFY proteins were identified from five Brassiceae species, and classified into ten subfamilies (six JAZ types, one PPD type, two TIFY types, and one ZML type) based on their phylogenetic relationships with TIFY proteins in A . thaliana and Brassiceae species. Duplication and synteny analysis revealed that segmental and tandem duplications led to the expansion of the TIFY family genes during the process of polyploidization, and most of these TIFY family genes ( TIFY s) were subjected to purifying selection after duplication based on Ka/Ks values. The spatial and temporal expression patterns indicated that different groups of BnaTIFYs have distinct spatiotemporal expression patterns under normal conditions and heavy metal stresses. Most of the JAZIII subfamily members were highest in all tissues, but JAZ subfamily members were strongly induced by heavy metal stresses. BnaTIFY34 , BnaTIFY59 , BnaTIFY21 and BnaTIFY68 were significantly upregulated mostly under As 3+ and Cd 2+ treatment, indicating that they could be actively induced by heavy metal stress. Our results may contribute to further exploration of TIFY s, and provided valuable information for further studies of TIFY s in plant tolerance to heavy metal stress.