Fluoxetine Induces Apoptosis through Extrinsic/Intrinsic Pathways and Inhibits ERK/NF-κB-Modulated Anti-Apoptotic and Invasive Potential in Hepatocellular Carcinoma Cells In Vitro.
Wei-Ting ChenFei-Ting HsuYu-Chang LiuCheng-Hsien ChenLi-Cho HsuSong-Shei LinPublished in: International journal of molecular sciences (2019)
The aim of the present study was to verify the effects of fluoxetine on dysregulation of apoptosis and invasive potential in human hepatocellular carcinoma (HCC) SK-Hep1 and Hep3B cells. Cells were treated with different concentrations of fluoxetine for different times. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assays were used for testing the effects of fluoxetine on cell viability. The regulation of apoptosis signaling, and anti-apoptotic, proliferation, and metastasis-associated proteins after fluoxetine treatment were assayed by flow cytometry and Western blotting assay. The detection of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation after fluoxetine treatment was performed by NF-κB reporter gene assay. The results demonstrated that fluoxetine significantly reduced cell viability, cell migration/invasion, NF-κB, extracellular signal-regulated kinases (ERK) activation, and expression of anti-apoptotic (Cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (C-FLIP), Myeloid cell leukemia-1 (MCL-1), X-Linked inhibitor of apoptosis protein (XAIP), and Survivin), proliferation (Cyclin-D1), angiogenesis (vascular endothelial growth factor (VEGF)), and metastasis-associated proteins (matrix metalloproteinase-9 (MMP-9)). Fluoxetine also significantly induced apoptosis, unregulated extrinsic (activation of first apoptosis signal protein and ligand (Fas/FasL), and caspase-8) and intrinsic (loss of mitochondrial membrane potential (ΔΨm) pathways and increased Bcl-2 homologous antagonist killer (BAK) apoptosis signaling. Taken together, these results demonstrated that fluoxetine induced apoptosis through extrinsic/intrinsic pathways and diminished ERK/NF-κB-modulated anti-apoptotic and invasive potential in HCC cells in vitro.
Keyphrases
- induced apoptosis
- signaling pathway
- cell cycle arrest
- pi k akt
- cell death
- oxidative stress
- endoplasmic reticulum stress
- nuclear factor
- vascular endothelial growth factor
- cell migration
- endothelial cells
- high throughput
- binding protein
- toll like receptor
- flow cytometry
- bone marrow
- dna damage
- anti inflammatory
- acute myeloid leukemia
- dendritic cells
- human health
- cell proliferation
- stem cells
- poor prognosis
- transcription factor
- gene expression
- lps induced
- genome wide
- inflammatory response
- small molecule
- climate change
- risk assessment
- immune response
- mesenchymal stem cells
- long non coding rna
- cell cycle
- quantum dots
- genome wide identification