Exploring The Prognostic Significance of SET-Domain Containing 2 (SETD2) Expression in Advanced and Castrate-Resistant Prostate Cancer.
Yaser GamallatJoema Felipe LimaSima SeyediQiaowang LiJon George RokneReda AlhajjSunita GhoshTarek A BismarPublished in: Cancers (2024)
SET-domain containing 2 (SETD2) is a histone methyltransferase and an epigenetic modifier with oncogenic functionality. In the current study, we investigated the potential prognostic role of SETD2 in prostate cancer. A cohort of 202 patients' samples was assembled on tissue microarrays (TMAs) containing incidental, advanced, and castrate-resistant CRPCa cases. Our data showed significant elevated SETD2 expression in advanced and castrate-resistant disease (CRPCa) compared to incidental cases (2.53 ± 0.58 and 2.21 ± 0.63 vs. 1.9 ± 0.68; p < 0.001, respectively). Interestingly, the mean intensity of SETD2 expression in deceased vs. alive patients was also significantly different (2.31 ± 0.66 vs. 2 ± 0.68; p = 0.003, respectively). Overall, high SETD2 expression was found to be considered high risk and was significantly associated with poor prognosis and worse overall survival (OS) (HR 1.80; 95% CI: 1.28-2.53, p = 0.001) and lower cause specific survival (CSS) (HR 3.14; 95% CI: 1.94-5.08, p < 0.0001). Moreover, combining high-intensity SETD2 with PTEN loss resulted in lower OS (HR 2.12; 95% CI: 1.22-3.69, p = 0.008) and unfavorable CSS (HR 3.74; 95% CI: 1.67-8.34, p = 0.001). Additionally, high SETD2 intensity with ERG positive expression showed worse prognosis for both OS (HR 1.99, 95% CI 0.87-4.59; p = 0.015) and CSS (HR 2.14, 95% CI 0.98-4.68, p = 0.058). We also investigated the protein expression database TCPA, and our results showed that high SETD2 expression is associated with a poor prognosis. Finally, we performed TCGA PRAD gene set enrichment analysis (GSEA) data for SETD2 overexpression, and our data revealed a potential association with pathways involved in tumor progression such as the AMPK signaling pathway, the cAMP signaling pathway, and the PI3K-Akt signaling pathway, which are potentially associated with tumor progression, chemoresistance, and a poor prognosis.
Keyphrases
- poor prognosis
- long non coding rna
- prostate cancer
- high intensity
- signaling pathway
- end stage renal disease
- pi k akt
- newly diagnosed
- ejection fraction
- chronic kidney disease
- dna methylation
- gene expression
- emergency department
- big data
- radical prostatectomy
- transcription factor
- machine learning
- patient reported outcomes
- deep learning
- atomic force microscopy
- drug induced
- free survival