Login / Signup

Let's get physical - mechanisms of crossover interference.

Lexy von DiezmannOfer Rog
Published in: Journal of cell science (2021)
The formation of crossovers between homologous chromosomes is key to sexual reproduction. In most species, crossovers are spaced further apart than would be expected if they formed independently, a phenomenon termed crossover interference. Despite more than a century of study, the molecular mechanisms implementing crossover interference remain a subject of active debate. Recent findings of how signaling proteins control the formation of crossovers and about the interchromosomal interface in which crossovers form offer new insights into this process. In this Review, we present a cell biological and biophysical perspective on crossover interference, summarizing the evidence that links interference to the spatial, dynamic, mechanical and molecular properties of meiotic chromosomes. We synthesize this physical understanding in the context of prevailing mechanistic models that aim to explain how crossover interference is implemented.
Keyphrases
  • open label
  • double blind
  • placebo controlled
  • mental health
  • physical activity
  • single cell
  • randomized controlled trial
  • mesenchymal stem cells
  • oxidative stress
  • study protocol
  • single molecule
  • genetic diversity