Model and human observer reproducibility for detection of microcalcification clusters in digital breast tomosynthesis images of three-dimensionally structured test object.
Dimitar PetrovNicholas MarshallKenneth C YoungGuozhi ZhangHilde BosmansPublished in: Journal of medical imaging (Bellingham, Wash.) (2019)
We compare the reproducibility of the human observers and a channelized Hotelling observer (CHO), when reading digital breast tomosynthesis (DBT) images of a physical phantom containing a breast simulating structured background and calcification clusters at three dose levels. The phantom is scanned 217 times on a Siemens Inspiration DBT system. Volumes of interest, with and without the calcification targets, are extracted and the human observers' percentage of correct (PC) scores is evaluated using a four-alternative forced choice method. A two-layer CHO is developed using the human observer results. The first layer consists of a localizing CHO that identifies the most conspicuous calcifications using two Laguerre-Gauss channels. Then a CHO with eight Gabor channels estimates the PC score for the calcification cluster. Observer reproducibility is estimated by bootstrapping, and the standard deviation (SD) is used as a figure of merit. The CHO closely approximated the human observer results for all the three dose levels with a correlation of > 0.97 . For the larger calcification cluster sizes, both observers have similar reproducibility, whereas the CHO is more reproducible for the smaller calcifications, with a maximum of 5.5 SD against 13.1 SD for the human observers. The developed CHO is a good candidate for automated reading of the calcification clusters of the structured phantom, with better reproducibility than the human readers for small calcifications.