Login / Signup

Deep Learning for Drug Development: Using CNNs in MIA-QSAR to Predict Plasma Protein Binding of Drugs.

Affaf KhaouaneLatifa KhaouaneSamira FerhatSalah Hanini
Published in: AAPS PharmSciTech (2023)
Predicting plasma protein binding (PPB) is crucial in drug development due to its profound impact on drug efficacy and safety. In our study, we employed a convolutional neural network (CNN) as a tool to extract valuable information from the molecular structures of 100 different drugs. These extracted features were then used as inputs for a feedforward network to predict the PPB of each drug. Through this approach, we successfully obtained 10 specific numerical features from each drug's molecular structure, which represent fundamental aspects of their molecular composition. Leveraging the CNN's ability to capture these features significantly improved the precision of our predictions. Our modeling results revealed impressive accuracy, with an R 2 train value of 0.89 for the training dataset, a [Formula: see text] of 0.98, a [Formula: see text] of 0.931 for the external validation dataset, and a low cross-validation mean squared error (CV-MSE) of 0.0213. These metrics highlight the effectiveness of our deep learning techniques in the fields of pharmacokinetics and drug development. This study makes a substantial contribution to the expanding body of research exploring the application of artificial intelligence (AI) and machine learning in drug development. By adeptly capturing and utilizing molecular features, our method holds promise for enhancing drug efficacy and safety assessments in pharmaceutical research. These findings underscore the potential for future investigations in this exciting and transformative field.
Keyphrases