Login / Signup

The Browning Properties, Antioxidant Activity, and α-Glucosidase Inhibitory Improvement of Aged Oranges ( Citrus sinensis ).

Ting-Yu HsuKai-Min YangYi-Chan ChiangLi-Yun LinPo-Yuan Chiang
Published in: Foods (Basel, Switzerland) (2024)
Oranges contain many natural active chemicals, organic acids, and polysaccharides. Aging processing is commonly used to modify the color, quality, functional components, and stability of fruits. This study assesses the preparation of aging black oranges using various pre-treatments and solid fermentation. Oranges were aged for six weeks in fresh, non-blanching, blanching, and hot air-assisted aging cycle (AA) groups. The oranges' shrinkage ratio, color difference values, and soluble solids content changed significantly ( p < 0.05). Principal component analysis indicated that aging fermentation treatment accelerated glycolysis and increased the ratio of reducing sugars. The enhanced browning can be associated with the oxidation of ascorbic acid (0.66-0.47 mg/g) and the formation of 5-hydroxymethylfurfural (5-HMF) (0.09 mg/g). Furthermore, the presence of free polyphenols led to an increase in the total polyphenol and total flavonoid content. It also had a synergistic effect with 5-HMF in increasing the 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging capacity and ferric ion-reducing antioxidant power ( p < 0.05). AA had superior α-glucosidase inhibitory ability increasing from 67.31 to 80.48%. It also reduced the development time by 33%. Therefore, aging technology can enhance the bioactive compounds in oranges and provide a reference for future whole-fruit aging fermentation and health product creation.
Keyphrases