Login / Signup

Quantitative Structure-Activity Relationship Modeling and Docking of Monoterpenes with Insecticidal Activity Against Reticulitermes chinensis Snyder and Drosophila melanogaster.

Gabriela Cristina Soares RodriguesMayara Dos Santos MaiaEugene N MuratovLuciana ScottiMarcus Tullius Scotti
Published in: Journal of agricultural and food chemistry (2020)
The goal of this study was to perform in silico identification of bioinsecticidal potential of 42 monoterpenes against Drosophila melanogaster and Reticulitermes chinensis Snyder. Quantitative structure-activity relationship (QSAR) modeling was performed for both organisms, while docking and molecular dynamics were used only for Drosophila melanogaster. Neryl acetate has the lowest interaction energy (-87 kcal/mol) against active site of acetylcholinesterase, which is comparable to the ones of methiocarb and pirimicarb (-90 kcal/mol) and reported PDB binder 9-(3-iodobenzylamino)-1,2,3,4-tetrahydroacridine (-112.67 kcal/mol). Interaction stability was verified by molecular dynamics simulations and showed that the stability of ACHE active site complexes with three selected terpenes is comparable to the one of the pirimicarb and methiocarb. Overall, our results suggest that pulegone, citronellal, carvacrol, linalyl acetate, neryl acetate, citronellyl acetate, and geranyl acetate may be considered as a potential pesticide candidates.
Keyphrases