Evidence of region-specific right ventricular functional adaptation in endurance-trained men in response to an acute volume infusion.
Tony Graham DawkinsBryony Alice CurryAimee L DraneRachel N LordCory T RichardsFreya M LodgeZaheer YousefChristopher J A PughRobert E ShaveMichael StembridgePublished in: Experimental physiology (2021)
Eccentric remodelling of the right ventricle (RV) in response to increased blood volume and repetitive haemodynamic load during endurance exercise is well established. Structural remodelling is accompanied by decreased deformation at the base of the RV free wall, which might reflect an enhanced functional reserve capacity in response to haemodynamic perturbation. Therefore, in this study we examined the impact of acute blood volume expansion on RV wall mechanics in 16 young endurance-trained men (aged 24 ± 3 years) and 13 non-athletic male control subjects (aged 27 ± 5 years). Conventional echocardiographic parameters and the longitudinal strain and strain rate were quantified at the basal and apical levels of the RV free wall. Measurements were obtained at rest and after 7 ml/kg i.v. Gelofusine infusion, with and without a passive leg raise. After infusion, blood volume increased by 12 ± 4 and 14 ± 5% in endurance-trained individuals versus control subjects, respectively (P = 0.264). Both endurance-trained individuals (8 ± 10%) and control subjects (7 ± 9%) experienced an increase in free wall strain from baseline, which was also similar following leg raise (7 ± 10 and 6 ± 10%, respectively; P = 0.464). However, infusion evoked a greater increase in basal longitudinal strain in endurance-trained versus control subjects (16 ± 14 vs. 6 ± 11%; P = 0.048), which persisted after leg raise (16 ± 18 vs. 3 ± 11%; P = 0.032). Apical longitudinal strain and RV free wall strain rates were not different between groups and remained unchanged after infusion across all segments. Endurance training results in a greater contribution of longitudinal myocardial deformation at the base of the RV in response to a haemodynamic volume challenge, which might reflect a greater region-specific functional reserve capacity.
Keyphrases
- resistance training
- mycobacterium tuberculosis
- high intensity
- body composition
- low dose
- skeletal muscle
- cross sectional
- middle aged
- intensive care unit
- high frequency
- respiratory failure
- extracorporeal membrane oxygenation
- drug induced
- heart failure
- congenital heart disease
- atrial fibrillation
- ejection fraction
- mechanical ventilation