L-fucose reduces gut inflammation due to T-regulatory response in Muc2 null mice.
Natalia A FeofanovaVictoria D BetsMariya A BorisovaEkaterina A LitvinovaPublished in: PloS one (2022)
Fucose, the terminal glycan of the intestinal glycoprotein Mucin2, was shown to have an anti-inflammatory effect in mouse colitis models and modulate immune response due to macrophage polarization changes. In this study we evaluated the effect of 0.05% L-fucose supplementation of drinking water on immune parameters in the intestine of homozygous mutant Muc2-/-, compared to Muc2+/+ mice. To get into innate and adaptive immunity mechanisms of gut inflammation, we tested PrkdcSCIDMuc2-/- strain, Muc2 knockout on SCID background, that is characterized by lack of lymphocytes, in comparison with PrkdcSCID mice. We evaluated intestinal cytokine profiling, macrophage and eosinophil infiltration, and expression of Nos2 and Arg1 markers of macrophage activation in all strains. Markers of Th1, Treg and Th17 cells (Tbx21, Foxp3, and Rorc expression) were evaluated in Muc2-/- and Muc2+/+ mice. Both Muc2-/- and PrkdcSCIDMuc2-/- mice demonstrated increased numbers of macrophages, eosinophils, elevated levels of TNFa, GM-CSF, and IL-10 cytokines. In Muc2-/- mice we observed a wide range of pro-inflammatory cytokines elevated, such as IFN-gamma, IL-1b, IL-12p70, IL-6, M-CSF, G-CSF, IL-17, MCP-1, RANTES, MIP1b, MIP2. Muc2-/- mice demonstrated increase of Nos2, Tbx21 and Foxp3 genes mRNA, while in PrkdcSCIDMuc2-/- mice Arg1 expression was increased. We found that in Muc2-/- mice L-fucose reduced macrophage infiltration and IL-1a, TNFa, IFNgamma, IL-6, MCP-1, RANTES, MIP1b levels, decreased Nos2 expression, and induced the expression of Treg marker Foxp3 gene. On the contrary, in PrkdcSCIDMuc2-/- mice L-fucose had no effect on macrophage and eosinophil numbers, but increased TNFa, GM-CSF, IL-12p70, IL-6, IL-15, IL-10, MCP1, G-CSF, IL-3 levels and Nos2 gene expression, and decreased Arg1 gene expression. We demonstrated that anti-inflammatory effect of L-fucose observed in Muc2-/- mice is not reproduced in PrkdcSCIDMuc2-/-, which lack lymphocytes. We conclude that activation of Treg cells is a key event that leads to resolution of inflammation upon L-fucose supplementation in Muc2-/- mice.
Keyphrases
- high fat diet induced
- gene expression
- immune response
- poor prognosis
- drinking water
- adipose tissue
- anti inflammatory
- oxidative stress
- insulin resistance
- type diabetes
- escherichia coli
- cell death
- binding protein
- dendritic cells
- cell proliferation
- endothelial cells
- transcription factor
- induced apoptosis
- cell cycle arrest
- peripheral blood
- toll like receptor
- endoplasmic reticulum stress
- health risk