Login / Signup

Enzymatic Preparation, In-Depth Molecular Analysis, and In Vitro Digestion Simulation of Palmitoleic Acid (ω-7)-Enriched Fish Oil Triacylglycerols.

Lijun GeKeyun ChengWeibo LuYiwei CuiXuelian YinJianjun JiangYijing LiHaiming YaoJie LiaoJing XueQing Shen
Published in: Journal of agricultural and food chemistry (2024)
In this study, an enzymatic reaction was developed for synthesizing pure triacylglycerols (TAG) with a high content of palmitoleic acid (POA) using fish byproduct oil. The characteristics of synthesized structural TAGs rich in POA (POA-TAG) were analyzed in detail through ultrahigh-performance liquid chromatography Q Exactive orbitrap mass spectrometry. Optimal conditions were thoroughly investigated and determined for reaction systems, including the use of Lipozyme TL IM and Novozym 435, 15 wt % lipase loading, substrate mass ratio of 1:3, and water content of 2.5 and 0.5 wt %, respectively, resulting in yields of 67.50 and 67.45% for POA-TAG, respectively. Multivariate statistical analysis revealed that TAG 16:1/16:1/20:4, TAG 16:1/16:1/16:1, TAG 16:1/16:1/18:1, and TAG 16:0/16:1/18:1 were the main variables in Lipozyme TL IM and Novozym 435 enzyme-catalyzed products under different water content conditions. Finally, the fate of POA-TAG across the gastrointestinal tract was simulated using an in vitro digestion model. The results showed that the maximum release of free fatty acids and apparent rate constants were 71.44% and 0.0347 s -1 , respectively, for POA-TAG lipids, and the physical and structural characteristics during digestion depended on their microenvironments. These findings provide a theoretical basis for studying the rational design of POA-structural lipids and exploring the nutritional and functional benefits of POA products.
Keyphrases
  • mass spectrometry
  • liquid chromatography
  • fatty acid
  • magnetic resonance imaging
  • mental health
  • physical activity
  • nitric oxide
  • hydrogen peroxide
  • optical coherence tomography
  • capillary electrophoresis