Antimicrobial Peptide Mechanism Studied by Scattering-Guided Molecular Dynamics Simulation.
Robert AllsoppAnna PavlovaTyler ClineAria M SalyapongseRichard E GillilanYuan-Pu Peter DiBerthony DeslouchesJeffery B KlaudaJames C GumbartStephanie A Tristram-NaglePublished in: The journal of physical chemistry. B (2022)
In an effort to combat rising antimicrobial resistance, our labs have rationally designed cationic, helical, amphipathic antimicrobial peptides (AMPs) as alternatives to traditional antibiotics since AMPs incur bacterial resistance in weeks, rather than days. One highly positively charged AMP, WLBU2 (+13 e ), ( RR WV RR V R R WV R R VV R VV RR WV RR ), has been shown to be effective in killing both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria by directly perturbing the bacterial membrane nonspecifically. Previously, we used two equilibrium experimental methods: synchrotron X-ray diffuse scattering (XDS) providing lipid membrane thickness and neutron reflectometry (NR) providing WLBU2 depth of penetration into three lipid model membranes (LMMs). The purpose of the present study is to use the results from the scattering experiments to guide molecular dynamics (MD) simulations to investigate the detailed biophysics of the interactions of WLBU2 with LMMs of Gram-negative outer and inner membranes, and Gram-positive cell membranes, to elucidate the mechanisms of bacterial killing. Instead of coarse-graining, backmapping, or simulating without bias for several microseconds, all-atom (AA) simulations were guided by the experimental results and then equilibrated for ∼0.5 μs. Multiple replicas of the inserted peptide were run to probe stability and reach a combined time of at least 1.2 μs for G(-) and also 2.0 μs for G(+). The simulations with experimental comparisons help rule out certain structures and orientations and propose the most likely set of structures, orientations, and effects on the membrane. The simulations revealed that water, phosphates, and ions enter the hydrocarbon core when WLBU2 is positioned there. For an inserted peptide, the three types of amino acids, arginine, tryptophan, and valine (R, W, V), are arranged with the 13 Rs extending from the hydrocarbon core to the phosphate group, Ws are located at the interface, and Vs are more centrally located. For a surface state, R, W, and V are positioned relative to the bilayer interface as expected from their hydrophobicities, with Rs closest to the phosphate group, Ws close to the interface, and Vs in between. G(-) and G(+) LMMs are thinned ∼1 Å by the addition of WLBU2. Our results suggest a dual anchoring mechanism for WLBU2 both in the headgroup and in the hydrocarbon region that promotes a defect region where water and ions can flow across the slightly thinned bacterial cell membrane.
Keyphrases
- molecular dynamics
- gram negative
- multidrug resistant
- density functional theory
- molecular dynamics simulations
- antimicrobial resistance
- high resolution
- quantum dots
- single cell
- amino acid
- optical coherence tomography
- monte carlo
- fatty acid
- nitric oxide
- magnetic resonance imaging
- contrast enhanced
- aqueous solution
- living cells
- dual energy