Ultra-Stretchable Composite Organohydrogels Polymerized Based on MXene@Tannic Acid-Ag Autocatalytic System for Highly Sensitive Wearable Sensors.
Yuxin ZouGuoqiang LiuHanxin WangKang DuJinglun GuoZhenling ShangRuisheng GuoFeng ZhouWeimin LiuPublished in: Small (Weinheim an der Bergstrasse, Germany) (2024)
Conductive hydrogels have attracted widespread attention in the fields of biomedicine and health monitoring. However, their practical application is severely hindered by the lengthy and energy-intensive polymerization process and weak mechanical properties. Here, a rapid polymerization method of polyacrylic acid/gelatin double-network organohydrogel is designed by integrating tannic acid (TA) and Ag nanoparticles on conductive MXene nanosheets as catalyst in a binary solvent of water and glycerol, requiring no external energy input. The synergistic effect of TA and Ag NPs maintains the dynamic redox activity of phenol and quinone within the system, enhancing the efficiency of ammonium persulfate to generate radicals, leading to polymerization within 10 min. Also, ternary composite MXene@TA-Ag can act as conductive agents, enhanced fillers, adhesion promoters, and antibacterial agents of organohydrogels, granting them excellent multi-functionality. The organohydrogels exhibit excellent stretchability (1740%) and high tensile strength (184 kPa). The strain sensors based on the organohydrogels exhibit ultrahigh sensitivity (GF = 3.86), low detection limit (0.1%), and excellent stability (>1000 cycles, >7 days). These sensors can monitor the human limb movements, respiratory and vocal cord vibration, as well as various levels of arteries. Therefore, this organohydrogel holds potential for applications in fields such as human health monitoring and speech recognition.
Keyphrases
- human health
- reduced graphene oxide
- visible light
- quantum dots
- highly efficient
- risk assessment
- ionic liquid
- tissue engineering
- hyaluronic acid
- low cost
- gold nanoparticles
- endothelial cells
- healthcare
- climate change
- loop mediated isothermal amplification
- public health
- sensitive detection
- mental health
- high resolution
- working memory
- pseudomonas aeruginosa
- heart rate
- room temperature
- blood pressure
- label free
- metal organic framework
- escherichia coli
- pluripotent stem cells
- health promotion
- anti inflammatory
- staphylococcus aureus
- drug release
- respiratory tract