Login / Signup

Revisiting metric sex estimation of burnt human remains via supervised learning using a reference collection of modern identified cremated individuals (Knoxville, USA).

Marta HladBarbara VeselkaDawnie Wolfe SteadmanBaptiste HerregodsMarc ElskensHenrica AnnaertMathieu BoudinGiacomo CapuzzoSarah DalleGuy De MulderCharlotte SabauxKevin SalesseAmanda SengeløvElisavet StamatakiMartine VercauterenEugène WarmenbolDries TysChristophe Snoeck
Published in: American journal of physical anthropology (2021)
Our study demonstrated the potential of machine learning approaches, such as neural networks, for multivariate analyses. Using these statistical methods improves the rate of correct sex estimations in calcined human remains and can be applied to highly fragmented unburnt individuals from both archaeological and forensic contexts.
Keyphrases
  • machine learning
  • endothelial cells
  • neural network
  • induced pluripotent stem cells
  • pluripotent stem cells
  • big data
  • risk assessment