Login / Signup

Systemic LPS-induced Aβ-solubilization and clearance in AβPP-transgenic mice is diminished by heparanase overexpression.

Charlotte JendresenAndreas DigreHao CuiXiao ZhangIsrael VlodavskyJin-Ping LiLars N G Nilsson
Published in: Scientific reports (2019)
Amyloid-β (Aβ) is the main constituent of amyloid deposits in Alzheimer's disease (AD). The neuropathology is associated with neuroinflammation. Here, we investigated effects of systemic lipopolysaccharide (LPS)-treatment on neuroinflammation and Aβ deposition in AβPP-mice and double-transgenic mice with brain expression of AβPP and heparanase, an enzyme that degrades HS and generates an attenuated LPS-response. At 13 months of age, the mice received a single intraperitoneal injection of 50 µg LPS or vehicle, and were sacrificed 1.5 months thereafter. Aβ in the brain was analyzed histologically and biochemically after sequential detergent extraction. Neuroinflammation was assessed by CD45 immunostaining and mesoscale cytokine/chemokine ELISA. In single-transgenic mice, LPS-treatment reduced total Aβ deposition and increased Tween-soluble Aβ. This was associated with a reduced CXCL1, IL-1β, TNF-α-level and microgliosis, which correlated with amyloid deposition and total Aβ. In contrast, LPS did not change Aβ accumulation or inflammation marker in the double-transgenic mice. Our findings suggest that a single pro-inflammatory LPS-stimulus, if given sufficient time to act, triggers Aβ-clearance in AβPP-transgenic mouse brain. The effects depend on HS and heparanase.
Keyphrases