Graph deep learning for the characterization of tumour microenvironments from spatial protein profiles in tissue specimens.
Zhenqin WuAlexandro E TrevinoEric WuKyle SwansonHonesty J KimH Blaize D'AngioRyan PreskaGregory W CharvillePiero D DalerbaAnn Marie EgloffRavindra UppaluriUmamaheswar DuvvuriAaron T MayerJames Y ZouPublished in: Nature biomedical engineering (2022)
Multiplexed immunofluorescence imaging allows the multidimensional molecular profiling of cellular environments at subcellular resolution. However, identifying and characterizing disease-relevant microenvironments from these rich datasets is challenging. Here we show that a graph neural network that leverages spatial protein profiles in tissue specimens to model tumour microenvironments as local subgraphs captures distinctive cellular interactions associated with differential clinical outcomes. We applied this spatial cellular-graph strategy to specimens of human head-and-neck and colorectal cancers assayed with 40-plex immunofluorescence imaging to identify spatial motifs associated with cancer recurrence and with patient survival after treatment. The graph deep learning model was substantially more accurate in predicting patient outcomes than deep learning approaches that model spatial data on the basis of the local composition of cell types, and it generated insights into the effect of the spatial compartmentalization of tumour cells and granulocytes on patient prognosis. Local graphs may also aid in the analysis of disease-relevant motifs in histology samples characterized via spatial transcriptomics and other -omics techniques.
Keyphrases
- deep learning
- neural network
- convolutional neural network
- single cell
- high resolution
- endothelial cells
- machine learning
- induced apoptosis
- artificial intelligence
- stem cells
- cell proliferation
- oxidative stress
- small molecule
- mesenchymal stem cells
- single molecule
- cell therapy
- amino acid
- mass spectrometry
- papillary thyroid
- cell death
- fluorescence imaging
- protein protein
- pluripotent stem cells
- ultrasound guided