The Role of Cytokines in the Metastasis of Solid Tumors to the Spine: Systematic Review.
Wojciech ŁabędźAnna PrzybylaAgnieszka ZimnaMikołaj DąbrowskiŁukasz KubaszewskiPublished in: International journal of molecular sciences (2023)
Although many studies have investigated the role of cytokines in bone metastases, our knowledge of their function in spine metastasis is limited. Therefore, we performed a systematic review to map the available evidence on the involvement of cytokines in spine metastasis in solid tumors. A PubMed search identified 211 articles demonstrating a functional link between cytokines/cytokine receptors and bone metastases, including six articles confirming the role of cytokines/cytokine receptors in spine metastases. A total of 68 cytokines/cytokine receptors were identified to mediate bone metastases; 9 (mostly chemokines) played a role in spine metastases: CXC motif chemokine ligand (CXCL) 5, CXCL12, CXC motif chemokine receptor (CXCR) 4, CXCR6, interleukin (IL) 10 in prostate cancer, CX3C motif chemokine ligand (CX3CL) 1 and CX3C motif chemokine receptor (CX3CR) 1 in liver cancer, CC motif chemokine ligand (CCL) 2 in breast cancer, and transforming growth factor (TGF) β in skin cancer. Except for CXCR6, all cytokines/cytokine receptors were shown to operate in the spine, with CX3CL1, CX3CR1, IL10, CCL2, CXCL12, and CXCR4 mediating bone marrow colonization, CXCL5 and TGFβ promoting tumor cell proliferation, and TGFβ additionally driving bone remodeling. The number of cytokines/cytokine receptors confirmed to mediate spinal metastasis is low compared with the vast spectrum of cytokines/cytokine receptors participating in other parts of the skeleton. Therefore, further research is needed, including validation of the role of cytokines mediating metastases to other bones, to precisely address the unmet clinical need associated with spine metastases.
Keyphrases
- transforming growth factor
- prostate cancer
- systematic review
- cell proliferation
- bone marrow
- healthcare
- epithelial mesenchymal transition
- mesenchymal stem cells
- cell cycle
- randomized controlled trial
- spinal cord injury
- cell migration
- high resolution
- postmenopausal women
- single molecule
- soft tissue
- mass spectrometry
- atomic force microscopy
- clinical evaluation