Login / Signup

On the Consistency of the Exfoliation Free Energy of Graphenes by Molecular Simulations.

Anastasios D GotziasElena TocciAndreas A Sapalidis
Published in: International journal of molecular sciences (2021)
Monolayer graphene is now produced at significant yields, by liquid phase exfoliation of graphites in solvents. This has increased the interest in molecular simulation studies to give new insights in the field. We use decoupling simulations to compute the exfoliation free energy of graphenes in a liquid environment. Starting from a bilayer graphene configuration, we decouple the Van der Waals interactions of a graphene monolayer in the presence of saline water. Then, we introduce the monolayer back into water by coupling its interactions with water molecules and ions. A different approach to compute the graphene exfoliation free energy is to use umbrella sampling. We apply umbrella sampling after pulling the graphene monolayer on the shear direction up to a distance from a bilayer. We show that the decoupling and umbrella methods give highly consistent free energy results for three bilayer graphene samples with different size. This strongly suggests that the systems in both methods remain closely in equilibrium as we move between the states before and after the exfoliation. Therefore, the amount of nonequilibrium work needed to peel the two layers apart is minimized efficiently.
Keyphrases
  • room temperature
  • carbon nanotubes
  • walled carbon nanotubes
  • molecular dynamics
  • randomized controlled trial
  • meta analyses
  • quantum dots
  • molecular dynamics simulations