Differential expression and regulation of ADAD1, DMRTC2, PRSS54, SYCE1, SYCP1, TEX101, TEX48, and TMPRSS12 gene profiles in colon cancer tissues and their in vitro response to epigenetic drugs.
Mikhlid Hammad AlmutairiTurki M AlrubieAlaa T AlshareedaNada AlbarakatiAlhomidi AlmotiriAbdullah M AlamriBader O AlmutairiMohammad AlanaziPublished in: PloS one (2024)
Colon cancer (CC) is a significant cause of death worldwide, particularly in Saudi Arabia. To increase the accuracy of diagnosis and treatment, it is important to discover new specific biomarkers for CC. The main objectives of this research are to identify potential specific biomarkers for the early diagnosis of CC by analyzing the expressions of eight cancer testis (CT) genes, as well as to analyze how epigenetic mechanisms control the expression of these genes in CC cell lines. Tissue samples were collected from 15 male patients with CC tissues and matched NC tissues for gene expression analysis. The expression levels of specific CT genes, including ADAD1, DMRTC2, PRSS54, SYCE1, SYCP1, TEX101, TEX48, and TMPRSS12, were assessed using quantitative techniques. To validate the gene expression patterns, we used publicly available CC statistics. To investigate the effect of inhibition of DNA methylation and histone deacetylation on CT gene expression, in vitro experiments were performed using HCT116 and Caco-2 cell lines. There was no detected expression of the genes neither in the patient samples nor in NC tissues, except for TEX48, which exhibited upregulation in CC samples compared to NC tissues in online datasets. Notably, CT genes showed expression in testis samples. In vitro, experiments demonstrated significant enhancement in mRNA expression levels of ADAD1, DMRTC2, PRSS54, SYCE1, SYCP1, TEX101, TEX48, and TMPRSS12 following treatment with 5-aza-2'-deoxycytidine and trichostatin A in HCT116 and Caco-2 cell lines. Epigenetic treatments modify the expression of CT genes, indicating that these genes can potentially be used as biomarkers for CC. The importance of conducting further research to understand and target epigenetic mechanisms to improve CC treatment cannot be overemphasized.
Keyphrases
- gene expression
- dna methylation
- genome wide
- genome wide identification
- poor prognosis
- computed tomography
- image quality
- dual energy
- bioinformatics analysis
- contrast enhanced
- genome wide analysis
- copy number
- binding protein
- squamous cell carcinoma
- transcription factor
- signaling pathway
- case report
- high resolution
- social media
- papillary thyroid
- young adults
- rna seq
- replacement therapy
- histone deacetylase
- pi k akt