Restoration of the prolyl-hydroxylase domain protein-3 oxygen-sensing mechanism is responsible for regulation of HIF2α expression and induction of sensitivity of myeloma cells to hypoxia-mediated apoptosis.
Gilberto GastelumAleksandra PoteshkinaMysore VeenaEdgar ArtigaGeraldine WecksteinPatrick FrostPublished in: PloS one (2017)
Multiple myeloma (MM) is an incurable disease of malignant plasma B-cells that infiltrate the bone marrow (BM), resulting in bone destruction, anemia, renal impairment and infections. Physiologically, the BM microenvironment is hypoxic and this promotes MM progression and contributes to resistance to chemotherapy. Since aberrant hypoxic responses may result in the selection of more aggressive tumor phenotypes, we hypothesized that targeting the hypoxia-inducible factor (HIF) pathways will be an effective anti-MM therapeutic strategy. We demonstrated that MM cells are resistant to hypoxia-mediated apoptosis in vivo and in vitro, and that constitutive expression of HIF2α contributed to this resistance. Since epigenetic silencing of the prolyl-hydroxylase-domain-3 (PHD3) enzyme responsible for the O2-dependent regulation of HIF2α is frequently observed in MM tumors, we asked if PHD3 plays a role in regulating sensitivity to hypoxia. We found that restoring PHD3 expression using a lentivirus vector or overcoming PHD3 epigenetic silencing using a demethyltransferase inhibitor, 5-Aza-2'-deoxycytidine (5-Aza-dC), rescued O2-dependent regulation of HIF2α and restored sensitivity of MM cells to hypoxia-mediated apoptosis. This provides a rationale for targeting the PHD3-mediated regulation of the adaptive cellular hypoxic response in MM and suggests that targeting the O2-sensing pathway, alone or in combination with other anti-myeloma chemotherapeutics, may have clinical efficacy.
Keyphrases
- endothelial cells
- induced apoptosis
- multiple myeloma
- poor prognosis
- bone marrow
- cell cycle arrest
- dna methylation
- stem cells
- binding protein
- gene expression
- mesenchymal stem cells
- cancer therapy
- endoplasmic reticulum stress
- chronic kidney disease
- immune response
- clinical trial
- radiation therapy
- long non coding rna
- newly diagnosed
- rectal cancer
- bone regeneration