Development, Validation and Application of an Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS) Method after QuEChERS Cleanup for Selected Dichloroanilines and Phthalates in Rice Samples.
Emmanouil D TsochatzisOlga BegouStavros KalogiannisHelen G GikaEmel OzFatih ÖzGeorgios A TheodoridisPublished in: Foods (Basel, Switzerland) (2022)
Dichloroanilines and phthalic acid esters (phthalates) are food contaminants, stable in solution even at high temperatures, which exhibit considerable toxic effects, while acting as endocrine disruptors. In the present study, a quick and easy UHPLC-MS/MS method for simultaneously analyzing two dichloroanilines (3,4-DCA and 3,5-DCA) and six phthalates (DMP, DnBP, BBP, DnOP, DEHP, and mBP) in commercial rice samples was developed, validated, and applied. For the cleanup process, the methodology of quick, easy, cheap, effective, rugged, and safe (QuEChERS) was applied, whereas different dispersants (GCB, C18, and PSA) were tested. What was developed and presented had limits of detection ranging from 0.017 up to 0.12 mg/kg, recoveries (trueness) below 120%, and relative standard deviations (RSD; precision) <15% for all target analytes, whilst no significant matrix effects occurred for all analytes. It was determined that the rice samples analyzed using this developed technique did not contain any of the two dichloroaniline compounds (3,4-DCA and 3,5-DCA) nor two of the six phthalate (DMP and mBP) compounds analyzed, while the levels of other phthalates (DEHP, BBP, DnBP and DnOP) were within the legal limits. The current method ensures a fast and easy approach for the high-throughput quantification of the selected food contaminants in rice.
Keyphrases
- ultra high performance liquid chromatography
- tandem mass spectrometry
- ms ms
- solid phase extraction
- simultaneous determination
- high performance liquid chromatography
- liquid chromatography
- gas chromatography
- high resolution mass spectrometry
- liquid chromatography tandem mass spectrometry
- high throughput
- high resolution
- prostate cancer
- mass spectrometry
- drinking water
- gas chromatography mass spectrometry