Login / Signup

Characterization of real-time cine MR imaging distortion on 0.35 T MRgRT with concentric cine imaging QA phantom.

Shanti MarasiniMike ColeAusten CurcuruLara M DykeH Michael GachRocco FloresTaeho Kim
Published in: Physics in medicine and biology (2024)
Objective . Real-time MRgRT uses 2D-cine imaging for target tracking and motion evaluation. Rotation of gantry induced B 0 off-resonance, resulting in image artifacts and imaging isocenter-shift precluding MR-guided arc therapy. Standard MRI phantoms designed for higher resolution images face challenges when low-resolution cine imaging is needed to achieve high frame rates. This work aimed to examine the spatial accuracy including geometric distortion and isocenter shift in real-time during gantry rotation on a 0.35 T MR-Linac using the concentric Cine imaging quality assurance (QA) phantom and its associated image analysis software. Approach . The Cine imaging QA phantom consists of two concentric shells of low-T 1 mineral oil and a central alignment structure. The phantom was scanned on three different MRI systems; 0.55 T Siemens Free.Max, 1.5 T Philips Ingenia, and 0.35 T ViewRay MRIdian MR-Linac using 2D balanced steady-state free precession (bSSFP) imaging sequence. In addition, bSSFP cine MRI with the banding artifact correction was tested on 0.35 T ViewRay MR-Linac. Images from the MR-Linac were acquired with the Linac gantry stationary and rotating from gantry 300°→ 0° and vice versa. Three orthogonal image planes were scanned excluding the 1.5 T Philips Ingenia, where only the axial plane was scanned. The image analysis software calculated the distortion values as well as the isocenter position for each cine frame. Main results . The geometric distortion of cine imaging on MRIs and MR-Linac at gantry stationary are within 1 mm while the substantial geometric distortion of 2 and 2.2 mm were observed on 0.35 T MR-Linac while rotating the gantry clockwise (300°→ 0°) and counterclockwise 0°→ 300° respectively. The average imaging isocenter shift was 0.1 mm for both MRIs and the static gantry and imaging isocenter shift of ≤1.5 mm was observed during the gantry rotation. The imaging isocenter shift decreased by 1 ± 0.2 mm clockwise and counterclockwise with B 0 compensation. Significance . The concentric Cine imaging QA phantom and its associated software effectively demonstrate the image distortion on real-time cine imaging on regular MRIs and 0.35 T MR-Linac. The results of significant geometric distortion with a rotating gantry in the MR-Linac system require further investigation to alleviate the extent of the image distortion.
Keyphrases
  • high resolution
  • contrast enhanced
  • magnetic resonance
  • deep learning
  • fluorescence imaging
  • oxidative stress
  • fatty acid
  • high speed
  • single molecule