Login / Signup

Fast evaluation of protein dynamics from deficient 15N relaxation data.

Łukasz JaremkoMariusz JaremkoAndrzej EjchartMichał Nowakowski
Published in: Journal of biomolecular NMR (2018)
Simple and convenient method of protein dynamics evaluation from the insufficient experimental 15N relaxation data is presented basing on the ratios, products, and differences of longitudinal and transverse 15N relaxation rates obtained at a single magnetic field. Firstly, the proposed approach allows evaluating overall tumbling correlation time (nanosecond time scale). Next, local parameters of the model-free approach characterizing local mobility of backbone amide N-H vectors on two different time scales, S2 and R ex , can be elucidated. The generalized order parameter, S2, describes motions on the time scale faster than the overall tumbling correlation time (pico- to nanoseconds), while the chemical exchange term, R ex , identifies processes slower than the overall tumbling correlation time (micro- to milliseconds). Advantages and disadvantages of different methods of data handling are thoroughly discussed.
Keyphrases
  • electronic health record
  • big data
  • single molecule
  • preterm infants
  • genome wide
  • machine learning
  • cross sectional
  • data analysis
  • gene therapy
  • gestational age
  • deep learning