Login / Signup

The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis.

Oriol Alejo-ValleKaroline WeigertRaj BhayadiaMichelle NgHasan IssaChristoph BeyerStephan EmmrichKonstantin SchuschelChristian IhlingAndrea SinzMartin ZimmermannClaudia WickenhauserMarius FlasinskiEniko Melinda RegenyiMaurice LabuhnDirk ReinhardtMarie-Laure YaspoDirk HecklJan-Henning Klusmann
Published in: Blood (2021)
Given the plasticity of hematopoietic stem/progenitor cells, multiple routes of differentiation must be blocked during acute myeloid leukemia pathogenesis - the molecular basis of which is incompletely understood. Here we report that post-transcriptional repression of the transcription factor ARID3A by miR-125b is a key event in megakaryoblastic leukemia (AMKL) pathogenesis. AMKL is frequently associated with trisomy 21 and GATA1 mutations (GATA1s), and children with Down syndrome are at a high risk of developing this disease. We show that chromosome 21-encoded miR-125b synergizes with Gata1s to drive leukemogenesis in this context. Leveraging forward and reverse genetics, we uncover Arid3a as the main miR-125b target behind this synergy. We demonstrate that, during normal hematopoiesis, this transcription factor promotes megakaryocytic differentiation in concert with GATA1 and mediates TGFβ-induced apoptosis and cell cycle arrest in complex with SMAD2/3. While Gata1s mutations perturb erythroid differentiation and induce hyperproliferation of megakaryocytic progenitors, intact ARID3A expression assures their megakaryocytic differentiation and growth restriction. Upon knockdown, these tumor suppressive functions are revoked, causing a dual megakaryocytic/erythroid differentiation blockade and subsequently AMKL. Inversely, restoring ARID3A expression relieves the megakaryocytic differentiation arrest in AMKL patient-derived xenografts. This work illustrates how mutations in lineage-determining transcription factors and perturbation of post-transcriptional gene regulation can interplay to block multiple routes of hematopoietic differentiation and cause leukemia. In AMKL, surmounting this differentiation blockade through restoration of the tumor suppressor ARID3A represents a promising strategy for treating this lethal pediatric disease.
Keyphrases