The COVID-19 is one of the most significant obstacles that humanity is now facing. The use of computed tomography (CT) images is one method that can be utilized to recognize COVID-19 in early stage. In this study, an upgraded variant of Moth flame optimization algorithm (Es-MFO) is presented by considering a nonlinear self-adaptive parameter and a mathematical principle based on the Fibonacci approach method to achieve a higher level of accuracy in the classification of COVID-19 CT images. The proposed Es-MFO algorithm is evaluated using nineteen different basic benchmark functions, thirty and fifty dimensional IEEE CEC'2017 test functions, and compared the proficiency with a variety of other fundamental optimization techniques as well as MFO variants. Moreover, the suggested Es-MFO algorithm's robustness and durability has been evaluated with tests including the Friedman rank test and the Wilcoxon rank test, as well as a convergence analysis and a diversity analysis. Furthermore, the proposed Es-MFO algorithm resolves three CEC2020 engineering design problems to examine the problem-solving ability of the proposed method. The proposed Es-MFO algorithm is then used to solve the COVID-19 CT image segmentation problem using multi-level thresholding with the help of Otsu's method. Comparison results of the suggested Es-MFO with basic and MFO variants proved the superiority of the newly developed algorithm.
Keyphrases
- deep learning
- coronavirus disease
- computed tomography
- sars cov
- convolutional neural network
- machine learning
- dual energy
- image quality
- contrast enhanced
- early stage
- positron emission tomography
- magnetic resonance imaging
- respiratory syndrome coronavirus
- mental health
- randomized controlled trial
- copy number
- dna methylation
- neural network
- radiation therapy
- mass spectrometry
- clinical trial
- rectal cancer
- genome wide
- high resolution
- study protocol
- tandem mass spectrometry