Oviduct Fluid Extracellular Vesicles Change the Phospholipid Composition of Bovine Embryos Developed In Vitro.
Charles BanliatDaniel Le BourhisOphélie BernardiDaniel TomasValérie LabasPascal SalvettiBenoît GuyonnetPascal MermillodMarie Saint-DizierPublished in: International journal of molecular sciences (2020)
Oviduct fluid extracellular vesicles (oEVs) have been proposed as bringing key molecules to the early developing embryo. In order to evaluate the changes induced by oEVs on embryo phospholipids, fresh bovine blastocysts developed in vitro in the presence or absence of oEVs were analyzed by intact cell MALDI-TOF (Matrix assisted laser desorption ionization-Time of flight) mass spectrometry (ICM-MS). The development rates, cryotolerance, and total cell number of blastocysts were also evaluated. The exposure to oEVs did not affect blastocyst yield or cryotolerance but modified the phospholipid content of blastocysts with specific changes before and after blastocoel expansion. The annotation of differential peaks due to oEV exposure evidenced a shift of embryo phospholipids toward more abundant phosphatidylcholines (PC), phosphatidylethanolamines (PE), and sphingomyelins (SM) with long-chain fatty acids. The lipidomic profiling of oEVs showed that 100% and 33% of the overabundant masses in blastocysts and expanded blastocysts, respectively, were also present in oEVs. In conclusion, this study provides the first analysis of the embryo lipidome regulated by oEVs. Exposure to oEVs induced significant changes in the phospholipid composition of resulting embryos, probably mediated by the incorporation of oEV-phospholipids into embryo membranes and by the modulation of the embryonic lipid metabolism by oEV molecular cargos.