Login / Signup

Programmed Cell Death Ligand 1 (PD-L1) Signaling Regulates Macrophage Proliferation and Activation.

Genevieve P HartleyLyndah ChowDylan T AmmonsWilliam H WheatSteven W Dow
Published in: Cancer immunology research (2018)
Tumor-associated macrophages (TAMs) express programmed cell death ligand 1 (PD-L1) and contribute to the immune-suppressive tumor microenvironment. Although the role of the PD-L1 and PD-1 interaction to regulate T-cell suppression is established, less is known about PD-L1 signaling in macrophages and how these signals may affect the function of TAMs. We used in vitro and in vivo models to investigate PD-L1 signaling in macrophages and the effects of PD-L1 antibody treatment on TAM responses. Treatment of mouse and human macrophages with PD-L1 antibodies increased spontaneous macrophage proliferation, survival, and activation (costimulatory molecule expression, cytokine production). Similar changes were observed in macrophages incubated with soluble CD80 and soluble PD-1, and in PD-L1-/- macrophages. Macrophage treatment with PD-L1 antibodies upregulated mTOR pathway activity, and RNAseq analysis revealed upregulation of multiple macrophage inflammatory pathways. In vivo, treatment with PD-L1 antibody resulted in increased tumor infiltration with activated macrophages. In tumor-bearing RAG-/- mice, upregulated costimulatory molecule expression by TAMs and reduced tumor growth were observed. Combined PD-1/ PD-L1 antibody treatment of animals with established B16 melanomas cured half of the treated mice, whereas treatment with single antibodies had little therapeutic effect. These findings indicate that PD-L1 delivers a constitutive negative signal to macrophages, resulting in an immune-suppressive cell phenotype. Treatment with PD-L1 antibodies reverses this phenotype and triggers macrophage-mediated antitumor activity, suggesting a distinct effect of PD-L1, but not PD-1, antibody treatment. Cancer Immunol Res; 6(10); 1260-73. ©2018 AACR.
Keyphrases
  • adipose tissue
  • poor prognosis
  • type diabetes
  • cell proliferation
  • endothelial cells
  • bone marrow
  • metabolic syndrome
  • young adults
  • long non coding rna
  • binding protein
  • insulin resistance