Isothiocyanates (ITCs) 1-(Isothiocyanatomethyl)-4-phenylbenzene and 1-Isothiocyanato-3,5-bis(trifluoromethyl)benzene-Aldehyde Dehydrogenase (ALDH) Inhibitors, Decreases Cisplatin Tolerance and Migratory Ability of NSCLC.
Jolanta KryczkaJakub KryczkaLukasz JanczewskiAnna GajdaAndrzej FrączykJoanna BoncelaBeata KolesinskaEwa Brzeziańska-LasotaPublished in: International journal of molecular sciences (2022)
One of the main treatment modalities for non-small-cell lung cancer (NSCLC) is cisplatin-based chemotherapy. However, the acquisition of cisplatin resistance remains a major problem. Existing chemotherapy regimens are often ineffective against cancer cells expressing aldehyde dehydrogenase (ALDH). As such, there is an urgent need for therapies targeting ALDH-positive cancer cells. The present study compares the anticancer properties of 36 structurally diverse isothiocyanates (ITCs) against NSCLC cells with the ALDH inhibitor disulfiram (DSF). Their potential affinity to ALDH isoforms and ABC proteins was assessed using AutoDockTools, allowing for selection of three compounds presenting the strongest affinity to all tested proteins. The selected ITCs had no impact on NSCLC cell viability (at tested concentrations), but significantly decreased the cisplatin tolerance of cisplatin-resistant variant of A549 (A549CisR) and advanced (stage 4) NSCLC cell line H1581. Furthermore, long-term supplementation with ITC 1-(isothiocyanatomethyl)-4-phenylbenzene reverses the EMT phenotype and migratory potential of A549CisR to the level presented by parental A549 cells, increasing E-Cadherin expression, followed by decreased expression of ABCC1 and ALDH3A1. Our data indicates that the ALDH inhibitors DSF and ITCs are potential adjuvants of cisplatin chemotherapy.