Login / Signup

Tracking evoked responses to auditory and visual stimuli in fetuses exposed to maternal high-risk conditions.

Hari EswaranChrystal LauPam MurphyEric R SiegelHubert PreisslCurtis Lowery
Published in: Developmental psychobiology (2020)
Magnetoencephalography (MEG) has been successfully applied to record fetal auditory (auditory evoked response [AER]) and visual evoked responses (VER). In this study, we report the AER and VER development trajectory by tracking the evoked response detectability and latency from recordings starting at 27 weeks of gestation in pregnancies classified as high risk. Fetal MEG and ultrasound recordings were performed on 158 pregnant women, and the total number of fetal auditory and visual tests conducted was 321 and 237, respectively. The overall evoked response analysis showed 237 AER (73.8%) and 164 VER detections (69.2%). The mean AER latency was 290.7 (SD 125.5) ms and the mean VER latency was 293.7 (SD 114.5) ms. The rate of decrease (95% confidence limits) in average AER and VER first-peak latency between 100-350 ms was 1.97 (-1.86, +5.81) ms/week and 1.35 (-3.83, +6.53) ms/week, respectively. This trend in high-risk fetuses conforms to the general trajectory of decrease in latency with gestational age progression, even though this decrease was non-significant, as reported in the case of normal growing fetuses. Although there was a significant difference in detection rates between male and female fetuses, this was not reflected in either latency values or the sensory modality applied. Furthermore, the main factors that had the most significant effect on response detectability included the presence of intervening layers of adipose tissue between the fetal head and stimulus source and an increase in the maternal body mass index.
Keyphrases