A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism.
Joana C XavierKensuke IgarashiKamila B MuchowskaMingquan YuSreejith J VarmaKarl KleinermannsMasaru Konishi NobuYoichi KamagataHarun TüysüzJoseph MoranWilliam F MartinPublished in: Nature ecology & evolution (2020)
Hydrogen gas, H2, is generated by alkaline hydrothermal vents through an ancient geochemical process called serpentinization, in which water reacts with iron-containing minerals deep within the Earth's crust. H2 is the electron donor for the most ancient and the only energy-releasing route of biological CO2 fixation, the acetyl-CoA pathway. At the origin of metabolism, CO2 fixation by hydrothermal H2 within serpentinizing systems could have preceded and patterned biotic pathways. Here we show that three hydrothermal minerals-greigite (Fe3S4), magnetite (Fe3O4) and awaruite (Ni3Fe)-catalyse the fixation of CO2 with H2 at 100 °C under alkaline aqueous conditions. The product spectrum includes formate (up to 200 mM), acetate (up to 100 µM), pyruvate (up to 10 µM), methanol (up to 100 µM) and methane. The results shed light on both the geochemical origin of microbial metabolism and the nature of abiotic formate and methane synthesis in modern hydrothermal vents.