Login / Signup

Mito-Specific Nutri-Hijacker Synergizing Mitochondrial Metabolism and Glycolysis Intervention for Enhanced Antitumor Bioenergetic Therapy.

Jingjing YangMaoquan ChuYuanlin ZhangJin QianJie LiuManyu WangZhe QiangJie Ren
Published in: ACS applied materials & interfaces (2024)
Metabolic rewiring, a dynamic metabolic phenotype switch, confers that tumors exist and proliferate after fitness (or preadaptation) in harsh environmental conditions. Glycolysis deprivation was considered to be a tumor's metabolic Achilles heel. However, metabolic configuration can flexibly retune the mitochondrial metabolic ability when glycolysis is scared, potentially resulting in more aggressive clones. To address the challenge of mitochondrial reprogramming, an antiglycolytic nanoparticle (GRPP NP) containing a novel mitochondrial-targeted reactive oxygen species (ROS) generator (diIR780) was prepared to hijack glucose and regulate mitochondria, thus completely eliminating tumorigenic energy sources. In this process, GRPP NPs@diIR780 can catalyze endogenous glucose, leading to significantly suppressed glycolysis. Moreover, diIR780 can be released and selectively accumulated around mitochondria to generate toxic ROS. These combined effects, in turn, can hamper mitochondrial metabolism pathways, which are crucial for driving tumor progression. This synchronous intervention strategy enables utter devastation of metabolic rewiring, providing a promising regiment to eradicate tumor lesions without recurrence.
Keyphrases