Role of saturated and unsaturated fatty acids on dicarbonyl-albumin derived advanced glycation end products in vitro.
Brock PeakeMaulik GhetiaCobus GerberMaurizio CostabilePermal DeoPublished in: Amino acids (2021)
Glycation is a non-enzymatic reaction that occurs between the free amino group of proteins and reducing sugars and/or lipids, leading to the formation of advanced glycation end products (AGEs). The reaction also produces reactive oxygen species that have detrimental effects on cellular and extracellular proteins. Aminoguanidine is a known inhibitor of AGEs, and some fatty acids are known to have a beneficial role in vivo by reducing inflammation and oxidative stress. However, the role of fatty acids on AGE formation has not been thoroughly reported. We investigated the role of a range of fatty acids in the formation of AGEs and their reactive intermediates using an in vitro BSA-dicarbonyl model. The model assessed a time-dependent (0-72 h) and dicarbonyl concentration (0-2 mM) -dependent studies for the optimal formation of AGEs. A 72 h time point was found to be optimal for the reaction of BSA with either methylglyoxal (MGO) or glyoxal (GO) to generate AGE-BSA complexes. When arachidonic, eicosapentaenoic or docosahexaenoic acids were included in the reaction, a significant decrease in protein-bound fluorescent AGEs was seen compared to the respective controls. In contrast, saturated and 18 carbon polyunsaturated fatty acids showed no significant activity. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis showed saturated fatty acids significantly decreased the production of Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) from GO and MGO models, respectively, whilst increasing methylglyoxal-derived hydroimidazolone (MG-H1). In contrast, arachidonic, eicosapentaenoic and docosahexaenoic acids did not significantly change either CEL or MG-H1 compared to no treatment controls whilst significantly reducing CML levels.
Keyphrases
- fatty acid
- mass spectrometry
- oxidative stress
- liquid chromatography
- reactive oxygen species
- magnetic resonance
- magnetic resonance imaging
- high resolution
- high resolution mass spectrometry
- computed tomography
- signaling pathway
- hydrogen peroxide
- small molecule
- tandem mass spectrometry
- nitric oxide
- protein protein
- ms ms
- smoking cessation
- label free
- case control
- replacement therapy
- heat shock
- single molecule
- solid phase extraction