Login / Signup

Gene Silencing Mechanisms Revealed by Dynamics of Guide, Target, and Duplex Binding to Argonaute.

Hui-Chung TaiCarmay Lim
Published in: Journal of chemical theory and computation (2019)
Argonaute (Ago) protein plays a central role in silencing gene expression by binding a "guide" strand to the base-pair with a complementary mRNA and degrading the mRNA. The current understanding of how Ago-guide and Ago-guide-mRNA complexes assemble is based mainly on static crystal structures; the associated kinetic pathways remain unknown/unclear. By simulating the successive binding of guide/target strand to Thermus thermophilus Ago (TtAgo) and computing the respective free energy landscapes, we directly visualize how TtAgo silencing complexes form and function. We show that the guide binding rate depends on its initial loading position onto TtAgo. Subsequent target recognition beyond the scissile 10-11 nucleotides must overcome a substantial energy barrier for TtAgo's nucleotide-binding groove to expand widely. This work reveals novel roles for the core TtAgo domains and shows how the kinetic barriers that must be overcome for critical structural changes to occur lead to target repression/cleavage.
Keyphrases
  • binding protein
  • gene expression
  • dna binding
  • dna methylation
  • small molecule
  • amino acid