Login / Signup

A General Strategy for the Asymmetric Preparation of α-Stereogenic Allyl Silanes, Germanes, and Boronate Esters via Dual Copper Hydride- and Palladium-Catalysis.

James Levi KnippelAnton Z NiAlexander W SchuppeStephen L Buchwald
Published in: Angewandte Chemie (International ed. in English) (2022)
α-Stereogenic allyl metalloids are versatile synthetic intermediates which can undergo various stereocontrolled transformations. Most existing methods to prepare α-stereogenic allyl metalloids involve multi-step sequences that curtail the number of compatible substrates and are limited to the synthesis of boronates. Here, we report a general method for the enantioselective preparation of α-stereogenic allyl metalloids utilizing dual CuH- and Pd-catalysis. This approach leverages a stereoretentive Cu-to-Pd transmetalation of an in situ generated alkyl copper species to allow access to enantioenriched allyl silanes, germanes, and boronate esters with broad functional group compatibility.
Keyphrases
  • molecularly imprinted
  • visible light
  • oxide nanoparticles
  • reduced graphene oxide