PPARγ and Diabetes: Beyond the Genome and Towards Personalized Medicine.
Simona CataldiValerio CostaAlfredo CiccodicolaMarianna AprilePublished in: Current diabetes reports (2021)
PPARγ regulates the transcription of several target genes governing adipocyte differentiation and glucose and lipid metabolism, as well as insulin sensitivity and inflammatory pathways. These pleiotropic functions confer great relevance to PPARγ in physiological regulation of whole-body metabolism, as well as in the etiology of metabolic disorders. Accordingly, PPARG gene mutations, nucleotide variations, and post-translational modifications have been associated with adipose tissue disorders and the related risk of insulin resistance and type 2 diabetes (T2D). Moreover, PPARγ alternative splicing isoforms-generating dominant-negative isoforms mainly expressed in human adipose tissue-have been related to impaired PPARγ activity and adipose tissue dysfunctions. Thus, multiple regulatory levels that contribute to PPARγ signaling complexity may account for the beneficial as well as adverse effects of PPARγ agonists. Further targeted analyses, taking into account all these aspects, are needed for better deciphering the role of PPARγ in human pathophysiology, especially in insulin resistance and T2D. The therapeutic potential of full and partial PPARγ synthetic agonists underlines the clinical significance of this nuclear receptor. PPARG mutations, polymorphisms, alternative splicing isoforms, and post-translational modifications may contribute to the pathogenesis of metabolic disorders, also influencing the responsiveness of pharmacological therapy. Therefore, in the context of the current evidence-based trend to personalized diabetes management, we highlight the need to decipher the intricate regulation of PPARγ signaling to pave the way to tailored therapies in patients with insulin resistance and T2D.
Keyphrases
- insulin resistance
- adipose tissue
- type diabetes
- high fat diet
- metabolic syndrome
- polycystic ovary syndrome
- skeletal muscle
- glycemic control
- high fat diet induced
- cardiovascular disease
- fatty acid
- emergency department
- dna methylation
- stem cells
- blood pressure
- transcription factor
- drug induced
- oxidative stress
- cell therapy