Dynamin-2 mutations linked to neonatal-onset centronuclear myopathy impair exocytosis and endocytosis in adrenal chromaffin cells.
Lucas BayonésMaría José Guerra-FernándezCindel Figueroa-CaresLuciana I GalloSamuel Alfonso-BuenoOctavio CaspeMaría Pilar CanalXimena Báez-MatusArlek González-JamettAna María CárdenasFernando D MarengoPublished in: Journal of neurochemistry (2024)
Dynamins are large GTPases whose primary function is not only to catalyze membrane scission during endocytosis but also to modulate other cellular processes, such as actin polymerization and vesicle trafficking. Recently, we reported that centronuclear myopathy associated dynamin-2 mutations, p.A618T, and p.S619L, impair Ca 2+ -induced exocytosis of the glucose transporter GLUT4 containing vesicles in immortalized human myoblasts. As exocytosis and endocytosis occur within rapid timescales, here we applied high-temporal resolution techniques, such as patch-clamp capacitance measurements and carbon-fiber amperometry to assess the effects of these mutations on these two cellular processes, using bovine chromaffin cells as a study model. We found that the expression of any of these dynamin-2 mutants inhibits a dynamin and F-actin-dependent form of fast endocytosis triggered by single action potential stimulus, as well as inhibits a slow compensatory endocytosis induced by 500 ms square depolarization. Both dynamin-2 mutants further reduced the exocytosis induced by 500 ms depolarizations, and the frequency of release events and the recruitment of neuropeptide Y (NPY)-labeled vesicles to the cell cortex after stimulation of nicotinic acetylcholine receptors with 1,1-dimethyl-4-phenyl piperazine iodide (DMPP). They also provoked a significant decrease in the Ca 2+ -induced formation of new actin filaments in permeabilized chromaffin cells. In summary, our results indicate that the centronuclear myopathy (CNM)-linked p.A618T and p.S619L mutations in dynamin-2 affect exocytosis and endocytosis, being the disruption of F-actin dynamics a possible explanation for these results. These impaired cellular processes might underlie the pathogenic mechanisms associated with these mutations.
Keyphrases
- induced apoptosis
- cell cycle arrest
- late onset
- endoplasmic reticulum stress
- mass spectrometry
- poor prognosis
- diabetic rats
- ms ms
- signaling pathway
- cell death
- computed tomography
- stem cells
- adipose tissue
- drug induced
- functional connectivity
- blood glucose
- early onset
- mesenchymal stem cells
- pet imaging
- insulin resistance
- positron emission tomography
- myasthenia gravis