Login / Signup

[Effect and molecular mechanism of hesperadin-induced ferroptosis in chronic myeloid leukemia K562 cells].

J Y WeiL LiH M Liu
Published in: Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi (2024)
Objective: To investigate the effect and molecular mechanism of hesperadin in inducing ferroptosis in chronic myeloid leukemia cell line K562 cells. Methods: The effects of hesperadin on the viability, proliferation, and migration of K562 cells were detected though CCK8, EDU-594, and Transwell assays, and the apoptotic rate of K562 cells was detected by flow cytometry. In addition, C11-BODIPY and FerroOrange were utilized to detect intracellular lipid peroxidation and Fe(2+) levels. Meanwhile, the expression levels of ferroptosis-associated protein solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) in cells were detected through Western blot. Lipid peroxidation and Fe(2+) levels were also detected after transfection of cells with SLC7A11 overexpression plasmid. Results: Hesperadin decreased cell viability in a dose-dependent manner with IC(50) of 0.544 μmol/L. Hesperadin concentrations of 0.4 and 0.8 μmol/L were selected for follow-up experiments. EDU-594, Transwell, and flow cytometry showed significantly decreased proliferation and migration rate of K562 cells after 0.4 and 0.8 μmol/L hesperadin treatment for 24 h, and the apoptosis rate was significantly increased compared with the control group ( P <0.05). Western blot indicated a downregulated expression of the antiapoptotic protein Bcl-2 and an elevated expression of proapoptotic proteins Bax and Caspase-3. Moreover, hesperadin increased intracellular lipid peroxidation and Fe(2+) levels compared with the control treatment ( P <0.05). The combination of ferroptosis inhibitor (Fer-1) and hesperadin could reverse the effect of hesperadin on K562 cells. The mRNA and protein levels of ferroptosis-related genes SLC7A11 and GPX4 were significantly decreased in the 0.8 μmol/L hesperadin-treated group ( P <0.05). SLC7A11 overexpression can inhibit hesperadin effect and alleviate ferroptosis. Conclusion: Hesperadin can promote ferroptosis in K562 cells by regulating the SLC7A11/GPX4 axis.
Keyphrases