Login / Signup

Neuromolecular mechanisms related to reflex behaviour in Aplysia are affected by ocean acidification.

Jade M SourisseCelia Schunter
Published in: Royal Society open science (2024)
While ocean acidification (OA) impacts the behaviour of marine organisms, the complexity of neurosystems makes linking behavioural impairments to environmental change difficult. Using a simple model, we exposed Aplysia to ambient or elevated CO 2 conditions (approx. 1500 µatm) and tested how OA affected the neuromolecular response of the pleural-pedal ganglia and caused tail withdrawal reflex (TWR) impairment. Under OA, Aplysia relax their tails faster with increased sensorin-A expression, an inhibitor of mechanosensory neurons. We further investigate how OA affects habituation training output, which produced a 'sensitization-like' behaviour and affected vesicle transport and stress response gene expression, revealing an influence of OA on learning. Finally, gabazine did not restore normal behaviour and elicited little molecular response with OA, instead, vesicular transport and cellular signalling link other neurotransmitter processes with TWR impairment. Our study shows the effects of OA on neurological tissue parts that control for behaviour.
Keyphrases
  • knee osteoarthritis
  • gene expression
  • poor prognosis
  • dna methylation
  • air pollution
  • dna damage
  • dna repair
  • particulate matter
  • spinal cord injury
  • subarachnoid hemorrhage
  • multidrug resistant