Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues.
Mark A Skylar-ScottJeremy Y HuangAric LuAlex H M NgTomoya DuenkiSonglei LiuLucy L NamSarita DamarajuGeorge M ChurchJennifer A LewisPublished in: Nature biomedical engineering (2022)
The generation of organoids and tissues with programmable cellular complexity, architecture and function would benefit from the simultaneous differentiation of human induced pluripotent stem cells (hiPSCs) into divergent cell types. Yet differentiation protocols for the overexpression of specific transcription factors typically produce a single cell type. Here we show that patterned organoids and bioprinted tissues with controlled composition and organization can be generated by simultaneously co-differentiating hiPSCs into distinct cell types via the forced overexpression of transcription factors, independently of culture-media composition. Specifically, we used such orthogonally induced differentiation to generate endothelial cells and neurons from hiPSCs in a one-pot system containing either neural or endothelial stem-cell-specifying media, and to produce vascularized and patterned cortical organoids within days by aggregating inducible-transcription-factor and wild-type hiPSCs into randomly pooled or multicore-shell embryoid bodies. Moreover, by leveraging multimaterial bioprinting of hiPSC inks without extracellular matrix, we generated patterned neural tissues with layered regions composed of neural stem cells, endothelium and neurons. Orthogonally induced differentiation of stem cells may facilitate the fabrication of engineered tissues for biomedical applications.
Keyphrases
- stem cells
- induced pluripotent stem cells
- transcription factor
- endothelial cells
- high glucose
- gene expression
- cell therapy
- extracellular matrix
- diabetic rats
- single cell
- wild type
- neural stem cells
- dna binding
- spinal cord
- drug induced
- randomized controlled trial
- magnetic resonance imaging
- vascular endothelial growth factor
- mesenchymal stem cells
- computed tomography
- magnetic resonance
- open label