All- trans Retinoic Acid and Beta-Carotene Increase Sclerostin Production in C2C12 Myotubes.
Franz EwendtAnne LehmannMaximilian F WodakGabriele I StanglPublished in: Biomedicines (2023)
Sclerostin is a protein secreted by osteocytes whose encoding gene SOST is regulated by mechanical stimuli, cytokines, and all- trans retinoic acid (ATRA) and mediates antianabolic effects on bone formation as an inhibitor of the canonical Wnt/β-catenin pathway. Interestingly, skeletal muscle has recently been identified as another source of sclerostin, suggesting that the musculature may play an important role in maintaining bone mass. However, regulators of muscular SOST expression are virtually unknown. This study investigates the influence of ATRA and the provitamin A derivative beta-carotene (β-C) on sclerostin synthesis in muscle cells. The impact of ATRA, its synthetic analog TTNPB, and β-C on Sost transcription was analyzed by qRT-PCR in C2C12 myotubes and the secreted sclerostin protein by ELISA. ATRA strongly increases the sclerostin synthesis in C2C12 myotubes in a dose-dependent manner. The stimulating effect of ATRA and TTNPB on Sost is largely reduced in the presence of the retinoic acid receptor inhibitor AGN193109. β-C also increases the Sost expression, but this effect vanishes when β-C is coincubated with beta-carotene 15,15'-monooxygenase 1 (BCMO1)-specific siRNA. Thus, ATRA is a potent stimulator of sclerostin release in muscle cells. β-C can also increase Sost mRNA abundance, but this effect depends on the conversion to a retinoid.
Keyphrases
- skeletal muscle
- induced apoptosis
- binding protein
- poor prognosis
- cell cycle arrest
- endoplasmic reticulum stress
- oxidative stress
- metabolic syndrome
- gene expression
- cell death
- copy number
- long non coding rna
- cancer therapy
- bone mineral density
- high intensity
- anti inflammatory
- monoclonal antibody
- soft tissue
- real time pcr