Login / Signup

Temperature-dependent population dynamics for Aedes aegypti in outdoor, indoor, and enclosed habitats: a mathematical model for five North American cities.

Annika RoiseDorothy I Wallace
Published in: Bulletin of entomological research (2022)
A model for the Aedes aegypti lifecycle is developed that takes into account temperature-dependent maturation and death rates for several life stages, wet and dry egg oviposition with flooding, as well as three classes of larval habitat with different temperature profiles: outdoor (subject to external temperature fluctuations, human-inhabited), indoor (temperature moderated, human-inhabited, interior), and enclosed (temperature moderated, human free, exterior). An equilibrium analysis shows that the temperature range of outdoor viable equilibrium populations aligns closely with reported risk levels. Temperature patterns for El Paso, Texas; New York, New York; New Orleans, Louisiana; Orlando, Florida; and Miami, Florida, are considered. In four of these locations (all but New York), enclosed habitats can support mosquito populations even if all outdoor and indoor habitats are removed. In two locations (El Paso and New York) the model shows that in spite of the disappearance of adult mosquitoes during colder temperatures, populations reach seasonal steady state due to the survival of eggs. The results have implications for both vector and disease control.
Keyphrases